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M O D E L  O F  H E A T  T R A N S F E R  I N  B U B B L E  B O I L I N G  

Yu. B. Zudin UDC 536.423. I 

Based on representation of  the bubble-boiling process as near-wall turbulence, l imiting relations are obtained 

that describe heat transfer for  the low- and high-pressure regions. 

Introduction. The first theoretical representations in the field of bubble boiling belong to Labuntsov [1 ]. 

In [2 ], he obtained fundamental relations for the growth rate of a vapor bubble on a wall and the heat-transfer 

coefficient in boiling. According to the approach developed in [2 ] the specific heat flux q transferred from a heated 

wall to a boiling liquid is a sum of two components 

q = ql + q2" (1) 

The component ql is the heat transferred by conduction through a viscous sublayer of thickness 6: 

ql = 2 A T ~ 6 .  

The quantity 6 is calculated by analogy with one-phase forced convection as [3 ] 

3 = v / W ,  

where W = R ( d R / d t ) , r  is the dynamic velocity corresponding to "the effective turbulence of boiling." Hence the 

first term in (1), which describes the heat transfer in the low-pressure region, is obtained: 

~2AT3 (2) 

ql ~ vaTs �9 

The component q2 is the heat transferred by liquid evaporation involving formation of vapor bubbles: 

# 

q 2 = r p  W .  

This gives the second term in (1), which describes the heat transfer in the high-pressure region: 

2r p"A T 2 

q2 "~ a T  s 
(3) 

The next step in development of the theory of bubble boiling was made by Yagov [4 ], who pointed to the 

decisive role of "dry spots" on a high-pressure heating surface. In [4] a dependence q(AT) is obtained that 

asymptotically passes over to relation (2) in the low-pressure range. The asymptotic form of the solution [4 ] in the 

high-pressure range is as follows: 

q2 ~ 

v l / 2 r A T 3  ( 2 L / 3 / 2  (4) 

2 
a (Ts j  
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Thus,  for the low-pressure region both theories, i.e., [2 ] and [4 ], give formula (2). For the high-pressure 

region formula (4) is preferable since it fits experimental data better. Passing from the coordinates q(AT) to a(q) 
in relations (2), (4), we arrive at the following limiting expressions for the heat- t ransfer  coefficient: 

a I 

,,] 2q2 ] 1 / 3  

(5) 

for the low-pressure region; 

2j3( )J2 
a 2 ~ v  r Ts 

for the high-pressure region. 

Recently experimental studies of the heat transfer in boiling of organic fluids and cooling agents whose 

results are generalized in a handbook on heat transfer published in Germany have been carried out [51. The  

dependence of the heat- t ransfer  coefficient on the specific heat flux is represented in [5 ] by the relation 

- , .  (7) ~" = F T  0 1 3 3  q 

Here ff -- a/ao, "q = q/qo, ~= 1/lo are the dimensionless values of the heat- t ransfer  coefficient, the specific heat  

flux, and the characteristic dimension of roughness, respectively. The scales of the quantities in (7) are equal to 

a 0 = 0.1 

2 prq2] I/3 

) , aTXs ; qo = 2- 10 4 W / m  2 �9 l 0 4.10 -7 

The quantities F and rn in (7) are functions of the reduced pressure P: 

m .  (8) 

rn (P) = 0.9 - 0.3 P 0.3, (9) 

F ( P ) =  I ' 2 p 0 2 7 + p  ( 2 "5+  1 - P P  / " (10) 

A comparison of (7)-(10) with theoretical relations (5), (6) reveals the following substantial  differences. 

1. The experimental exponent in the dependence ff = qm decreases from m = 0.9 at P --, 0 to m = 0.6 at 

~ 1. The theory [2, 4 ] gives m = 2 /3  for the entire range of reduced pressures. 

2. The experimental dependence if(P) [5 ] acquires the form ff = p0.27 at P -, 0. According to theoretical 

relation (5) of [2 ] the heat transfer in the region of P --, 0 is practically independent  of the pressure. 

3. From generalizing formula (7) given in 15 ] it follows that for the entire range of reduced pressures the 

heat transfer depends on the characteristic dimension of the roughness as ff =/o.133. Note that recent experimental 

studies [6, 7 ] give an even stronger dependence: ff = (/o.2_/0.3). The theoretical models [2, 4 ] do not provide an 

analysis of the effect of roughness on heat transfer in boiling. 

The present work suggests an approoximate model of heat transfer in bubble boiling under  natural-  

convection conditions that agrees with the results of experimental studies [5-7 ]. 

1. Bubble Boiling as Near-Wall Turbulence. In [8, 9 ] in an analysis of turbulent heat t ransfer  in a two- 

phase bubbling layer the turbulent thermal diffusivity caused by bubble surface vibrations is introduced: 

a t ~ R 2 w  , 
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where w is the frequency of natural  vibrations of a bubble calculated by the Rayleigh formula 

According to [8, 9 ], heat t ransfer  in a bubble layer with the same radius R is de termined by the effective 

thermal conductivity: 

,Tt. = pep  (a  + at ) .  

Hence the following expression for the specific heat flux is obtained: 

q = - pcp  a + k -~y , 

where k is a numerical constant equal approximately to unity. 

Let us use relation (11) to describe the heat t ransfer  in a two-phase near-wall  layer  existing on a heat-  

t ransfer  surface under  boiling conditions [2, 4 ]. Similarly to the Prandt l  hypothesis  of a l inear dependence  of the 

mixing path length on the t ransverse coordinate,  we assume that for each value of the. t ransverse coordinate  y the 

largest contribution to turbulent  heat  t ransfer  is made by a bubble of radius R = 3'. Then  integrating (11) with 

respect to y at q -- const, we obtain an expression for the temperature  distribution in the near-wall  boiling layer: 

2qa  ( ~  _ In (1 + ~ ) )  (12) 
7" = T w - cp--S 

Here,  ~'= k l a y / ( p a  2) is the dimensionless distance from the wall; kl = k is a numerical  constant.  

At the outer  boundary  of the two-phase near-wall layer  the liquid tempera ture  must at tain the saturat ion 

temperature:  

y = • ;  T =  T s . 

Then  from (12) an expression that relates the heat - t ransfer  coefficient r = q / A T  to the dimensionless  thickness 

of the near-wall  liquid layer  ~"= o 6 / ( p a  2) follows: 

2~a ( d - g  - In (l  + d - - g  ) ) .  (13) 
1 = cpa 

At ~ ' ~  0 from (13) a "laminar" formula for conductive heat t ransfer  through the near-wall  liquid film follows that 

is similar to the approach of [2 ]: 

At 6"--, oo relation (13) leads to a "turbulent" law of heat t ransfer  [8, 91: 

2 
c~ 2 pr 

~---..-.~-. 

Assuming that 6 = 2 / c ~  and evaluating the orders of the quantities (kl = k = 1; cr = ( 1 0 - 2 - 1 0  - l )  N / m ;  
p = 10 -3 kg/m3; a = ( 1 0 - 7 - 1 0  -6) m2/sec; r = (104-105)  W / ( m 2 - K ) ) ,  we obtain ~ ' =  104-106,  ~ /2  >> In (1 

+ ~"~). Hence it follows that the heat t ransfer  through the near-wall boiling layer  is practically always (with an 

accuracy of up to = 5~o) determined by the regularities of the "bubble- layer  turbulence." As is known,  in the 

Labuntsov approach [2 ] the thickness of the near-wall liquid film is calculated from the dynamic  characterist ics 

of the boiling process, namely,  the radius and growth rate of a vapor bubble. In the present model the condition 
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of dense  packing of "macrobubbles"  in the two-phase layer 6 ~ L (Fig. 1) is assumed.  This  gives an express ion 

for the hea t - t r ans fe r  coefficient in bubble  boiling: 

2 
2 paCp (14) 

a 
L 

The  next  s tage in the model  is de terminat ion of the distance between vaporizat ion centers  or, which is the 

same,  the surface densi ty  of vaporizat ion centers  

N = 1_  (15) 
L 2" 

2. Sur face  Densi ty  of Vaporizat ion Centers.  The  first theoretical relat ion for N was suggested by Labuntsov 

[21: 

1 
N , ~ - -  2 '  

R ,  

where the radius of a critical vapor  nucleus R .  was determined from a l inear  approximat ion  of the sa tura t ion  curve: 

aTs (16) 
R ,  ~ 

r p"AT 

From a quadrat ic  approximat ion  of the saturat ion curve Yagov [4 ] obta ined the following express ion  for 

the low-pressures  region 

R,  ~- r p . A T 2 .  
(17) 

Re la t ions  (16),  (17) lead to power - l aw dependences  of the dens i ty  of vapor i za t ion  cen te r s  on the  

t empera ture  drop: N ~ AT 4 for the low-pressure  region; N - - A T  2 for the h igh-pressure  region. However ,  in a 

number  of exper imenta l  studies (see, for instance,  [6, 10]) a very strong dependence  N(AT)  was ob ta ined  over  

the ent i re  pressure  range  (up to the the rmodynamic  critical point): N ~ A T 4 - A T  5. Hence  it follows that  the 

distance between vaporization centers  is de te rmined  by some macroscale  of the length of the bubble-boi l ing  process 

ra ther  than by the radius of a critical vapor  nucleus R..  In [11, 12 ] such a macroscale  was de te rmined  f rom an  

analysis  of the flow in a liquid film benea th  vapor  bubbles  on a heat ing surface. As a result,  for the low-pressure  

region N ~ AT 6 was obtained,  and for the h igh-pressure  region N ~ AT 4. In a recent  exper imenta l  s tudy  [7 ] an  

even s t ronger  dependence  of the desi ty  of vaporization centers on the t empera tu re  drop,  namely ,  N ~ AT 7, was  

establ ished for a wide pressure  range. To  explain the indicated data,  below use is made  of a model  of boi l ing-center  

formation based on the "quantum hypothesis ."  

For a critical nucleus of the vapor  phase  to appear  in a liquid, energy equal to the free energy  on its surface 

E --~ aR2. is needed  [13 ]. Then  in generat ion of critical vapor nuclei of radius R .  in the center  of a cell of side L 

on the surface (Fig. 1) the energy E ~ (aR 2) ( R , / L )  2 ~ aR4,/L 2 will fall on each cell. The  nucleat ion f requency of 

vapor nuclei can be evaluated from the time needed for a thermal  wave to t raverse the dis tance R,(oJ ~ a/R2,). We 

assume that  the energy and frequency of nucleation of vapor nuclei are related in the  same way as in a quantum 

oscillator [14 ]: 

E ~ 7 ~ c ~ ,  (18) 

where-/I is the Planck constant.  Then  the above considerat ions allow the following relat ion for the dis tance between 

vaporization centers to be written: 
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Fig. 1. Schematic of the near-wall picture of bubble boiling: 1) critical vapor 

nucleus; 2) macrobubble;  3) two-phase bubble layer.  

L 2  aR6 (19) 
a ~ "  

Since application of the quantum hypothesis to describe the process of generat ion of vapor nuclei cannot  

be subs tant ia ted  r igorously,  below the well-known Motulevich "principle of relative cor respondence"  [15] is 

employed: "In determining relative quantities characterizing the deviation of the parameters  in two phenomena  close 

in their  physical nature,  considerably rougher  models of the process can be used than in determining the absolute 

magnitudes with the same degree of accuracy." 

Now we use the quantum hypothesis as a rough model to describe homogeneous nucleation in a superhea ted  

liquid volume, for which a strict theory exists [13 ]. Considering that a densely packed layer  of critical vapor nuclei 

is formed in the liquid volume, from relation (18) we find the volume frequency of nucleation: 

I = o)/R~ = E/(t iR~) = (cr/R.)/?~ = A P . / ~ .  

The  Laplace pressure drop across the surface of a thermodynamical ly  equilibrium critical nucleus can be evaluated 

as the pressure drop of "limiting superheating curve - saturation curve" [13] 

AP.  = 2 a / R .  --~ a3/2/~/kBTs , 

where kB is the Boltzmann constant.  

Comparison of the quantities I obtained using the quantum hypothesis  (the rough model) and the Kagan 

theoretical model of homogeneous nucleation [13 ] (the rigorous model) allows us to eliminate the Planck constant  

from relation (19): 

3 (20) = / ~ L . .  

In the Kagan theory L.  is a quanti ty of the order  of the intermolecular  distance in the liquid. For  the process 

of bubble boiling it is natural  to use the surface roughness dimension as L,:  L.  = l. Thus ,  use of the "principle of 

relative correspondence" yields a relation for the surface densi ty of vaporization centers that stems from (15), (19), 

(20): 

N = 1 = ap__~ (21) 
L 2 aR ,  6 " 

Note that the quantum hypothesis was used earlier in [ 16 ] to describe experimental  data [7 ] for the surface 

density of vaporization centers.  

3. Limiting Relations for Heat  Transfer .  Relations (14)-(17) and expression (21) make it possible to write 

resultant limiting relations for heat t ransfer  in bubble boiling in the low- and high-pressure regions. These  relations 

contain the Prandt l  number  for a liquid (Pr = v /a )  with small exponents  so that it was assumed approximate ly  that 
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Fig. 2. Heat transfer in bubble boiling in the low-pressure region for cooling 

agents (a) and organic liquids (b) according to experimental data [51 and 

calculation by a relation of [11 ] (I) and by formula (22) of the present work 

(II) (III, approximation of the experimental data): a: 1) R-11, 2) R-12, 3) 

R-22, 4) R-23, 5) R-113, 6) R-114, 7) R-226; b: 1) CH4, 2) C2H6, 3) C4Hlo, 

4) C3H12, 5) CH40, 6) C2H60, 7) C3H80, 8) C4Hlo, 9) C3H60. 

I x = pa. Simple evaluations show that here an error of any appreciable value can occur for two limiting cases with 

respect to the Prandtl number: liquid metals (Pr << I) and highly viscous fluids (Pr >> 1), which are not considered 

in the present work. The resultant limiting relations for the heat-transfer coefficient are: 

1. The low-pressure region (P ~ 0) 

q3/421/4/o"3/8r3/87/16 (22) 
a I 

if / 4  1/16 I / 8  5 / 1 6  
p a o 

In comparing relation (22) and empirical relation (7) taken from [5 ], we take into account the important 

fact that in the region of P --, 0 only the vapor density depends on the pressure, which can be expressed in terms 

of the reduced pressure as 

p" /p  .~ p .  

This allows us to represent relation (22) in dimensionless form as 

a'l = A ~ 3 / 8  T3 /16  q - 3 / 4  (23) 

Here A is a dimensionless constant that can be written, however, only in the form of a cumbersome formula that 

includes the liquid properties and the quantity scales prescribed by relation (8). To compare formula (22) with a 

file of experimental data [5 ], we carried out the procedure of selective numerical estimation described in [11 ]. As 

is seen from Fig. 2, there is good agreement between results calculated by formula (22) of the present work and 

experimental data [5 ] in the reduced-pressure range 0 _< P __< 0.1. 
N 

2. The high-pressure region (P --, 0) 

ct 2 ~- 

q3/ 522/ 5/9-3/ 5r3/ 5? /10  

f f  1/10 1/5 I / 2  / 5 p  a o 

(24) 

A comparison of expression (24) with Yagov limiting relation (6) reveals virtual coincidence of the 

exponents of the physical quantities that depend strongly on the pressure: vapor density p", saturation temperature 

Ts, specific heat of vaporization r, surface tension or. In [4 ], based on extensive experimental data it was shown 

that formula (6) describes satisfactorily the heat transfer in the high-pressure region. Consequently, this must be 

valid to a large extent for formula (24). However, the latter, also includes a dependence, which is absent in 14 ], 

of the heat-transfer coefficient on the surface roughness dimension lhat satisfactorily fits recent experimental data 

[6, 7 ]. It is also of interest to note that the exponent in the dependence (24) of the heat-transfer coefficient on the 
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reduced pressure yields the limiting value of empirical formula (9) taken from [5 ], which generalizes a large body 
of experimental data on boiling of organic liquids and cooling agents: 

P = I ,  rn = 0.6. 

The work was carried out with support from the Russian Fund for Fundamental Research, grant No. 
98-02-17812. 

N O T A T I O N  

2, thermal conductivity of the liquid; a, thermal diffusivity of the liquid;/~, dynamic viscosity of the liquid; 
v, kinematic viscosity of the liquid; p, liquid density; cp, specific heat of the liquid; p", vapor density; r, specific 
heat of vaporization; a, surface tension; T, liquid temperature; 5, thickness of the near-wall boiling layer; q, specific 

heat flux; L, distance between vaporization centers; AT = T w -  Ts, "wall-boiling liquid" temperature drop; a,  
heat-transfer coefficient; l, characteristic dimension of the surface roughness; y, transverse coordinate; R, radius 

of a vapor bubble; P, pressure; Per, pressure at the thermodynamic critical point; P -- P/Pcr, reduced pressure; N, 

surface density of vaporization centers; E, energy of the quantum oscillator. Subscripts: w, wall; s, saturation; 0, 
scale quantity; 1, at P --, 0 (low pressures); 2, at P --, 1 (high pressures); t, turbulent; cr, critical; , effective. 
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